วันพฤหัสบดีที่ 11 มิถุนายน พ.ศ. 2552

What is nanotechnology?(8)

What is nanotechnology?
(1):> 1. The Significance of the Nanoscale
(2):>2. New Materials: Nanomaterials
(3):>2.1 Nanomaterials
(4):>3. Nanomaterial Science
(5):>3.1 Nanoscale in Two Dimensions
(6):>3.2 Nanoscale in Two Dimensions(cont.)
(7):>3.3 Nanoscale in Three Dimensions(cont.)
(8):>3.4 Nanoscale in Three Dimensions(cont.)

-----------------------------------------------------------
3.3 Nanoscale in Three Dimensions(cont.)

b) Fullerenes (carbon 60)
Model C60In the mid-1980s a new class of carbon material was discovered called carbon 60 (C60).Harry Kroto and Richard Smalley, the experimental chemists who discovered C60 named it "buckminsterfullerene", in recognition of the architect Buckminster Fuller, who was well-known for building geodesic domes, and the term fullerenes was then given to any closed carbon cage. C60 are spherical molecules about 1nm in diameter, comprising 60 carbon atoms arranged as 20 hexagons and 12 pentagons: the configuration of a football. In 1990, a technique to produce larger quantities of C60 was developed by resistively heating graphite rods in a helium atmosphere. Several applications are envisaged for fullerenes, such as miniature ‘ball bearings’ to lubricate surfaces, drug delivery vehicles and in electronic circuits.

c) DendrimersDendrimers are spherical polymeric molecules, formed through a nanoscale hierarchical self-assembly process. There are many types of dendrimer; the smallest is several nanometres in size. Dendrimers are used in conventional applications such as coatings and inks, but they also have a range of interesting properties which could lead to useful applications. For example, dendrimers can act as nanoscale carrier molecules and as such could be used in drug delivery. Environmental clean-up could be assisted by dendrimers as they can trap metal ions, which could then be filtered out of water with ultra-filtration techniques.
d) Quantum DotsNanoparticles of semiconductors (quantum dots) were theorized in the 1970s and initially created in the early 1980s. If semiconductor particles are made small enough, quantum effects come into play, which limit the energies at which electrons and holes (the absence of an electron) can exist in the particles. As energy is related to wavelength (or colour), this means that the optical properties of the particle can be finely tuned depending on its size. Thus, particles can be made to emit or absorb specific wavelengths (colours) of light, merely by controlling their size. Recently, quantum dots have found applications in composites, solar cells (Gratzel cells) and fluorescent biological labels (for example to trace a biological molecule) which use both the small particle size and tuneable energy levels. Recent advances in chemistry have resulted in the preparation of monolayer-protected, high-quality, monodispersed, crystalline quantum dots as small as 2nm in diameter, which can be conveniently treated and processed as a typical chemical reagent.

ไม่มีความคิดเห็น:

แสดงความคิดเห็น