วันจันทร์ที่ 8 มิถุนายน พ.ศ. 2552

The Nanotechnology Revolution Nanomedicine(9)

Working on Cells

Moving through tissues without leaving a trail of disruption will require devices able to manipulate and direct the motions of cells, and to repair them. Much remains to be learned—and will be easy to learn with nanoscale tools—but today's knowledge of cells is enough for a start on the problem of how to do surgery on cells.
Cell biology is a booming field, even today. Cells can be made to live and grow in laboratory cultures if they are placed in a liquid with suitable nutrients, oxygen, and the rest. Even with today's crude techniques, much has been learned about how cells respond to different chemicals, to different neighbors, and even to being poked and cut with needles. Conducting a rough sort of surgery on individual cells has been routine for many years in scientific laboratories.
Today, researchers can inject new DNA into cells using a tiny needle; small punctures in a cell membrane automatically reseal. But both these techniques use tools that on a cellular scale are large and clumsy—like doing surgery with an ax or a wrecking ball, instead of a scalpel. Nano-scale tools will enable medical procedures involving delicate surgery on individual cells.
Eliminating Viruses by Cell SurgerySome viral diseases will respond to treatments that destroy viruses in the nose and throat, or in the bloodstream.
The flu and common cold are examples. Many others would be greatly improved by this, but not eliminated. All viruses work by injecting their genes into a cell and taking over its molecular machinery, using it to produce more viruses. This is part of what makes viral illnesses so hard to treat—most of the action is performed by the body's own molecular machines, which can't be interfered with on a wholesale basis. When the immune system deals with a viral illness, it both attacks free virus particles before they enter cells, and attacks infected cells before they can churn out too many more virus particles.
Some viruses, though, insert their genes among the genes of the cell, and lay low. The cell can seem entirely normal to the immune system, for months or years, until the viral genes are triggered into action and begin the infective process anew. This pattern is responsible for the persistence of herpes nfections, and for the slow, deadly progress of AIDS.
These viruses can be eliminated by molecular-level cellular surgery. The required devices could be small enough to fit entirely within the cell, if need be. Greg Fahy, who heads the Organ Cryopreservation Project at the American Red Cross's Jerome Holland Transplantation Laboratory, writes, "Calculations imply that molecular sensors, molecular computers, and molecular effectors can be combined into a device small enough to fit easily inside a single cell and powerful enough to repair molecular and structural defects (or to degrade foreign structures such as viruses and bacteria) as rapidly as they accumulate. . . .There is no reason such systems cannot be built and function as designed."
Equally well, a cell surgery device located outside a cell could reach through the membrane with long probes. At the ends of the probes would be tools and sensors along with, perhaps, a small auxiliary computer. These would
be able to reach through multiple membranes, unpackage and uncoil DNA, read it, repackage it, and recoil it, "proofreading" the DNA by comparing the sequences in one cell to the sequences of other cells.
On reading the genetic sequence spelling out the message of the AIDS virus, a molecular surgery machine could be programmed to respond like an immune machine, destroying the cell. But it would seem to make more sense simply to cut out the AIDS virus genes themselves, and reconnect the ends as they were before infection. By doing this, and killing any viruses found in the cell, the procedure would restore the cell to health.

Source:
>1991 "Nanomedicine," Chapter 10, Unbounding the Future (K. Eric Drexler, Christine Peterson, Gayle Pergamit)
>Dec. 1994 "Nanotechnology and Medicine" (Ralph C. Merkle) >http://inventors.about.com/gi/dynamic/offsite.htm?zi=1/XJ/Ya&sdn=inventors&zu=http%3A%2F%
2Fen.wikipedia.org%2Fwiki%2FNanotechnology

ไม่มีความคิดเห็น:

แสดงความคิดเห็น